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Classical systems with few degrees of freedom

A) 1 degree of freedom + arbitrary potential V

Hamiltonian H = p2

2 + V1(x)
System integrable for any potential V1(x)

⇒ long time trajectory prediction possible

B) 2 (or more) degrees of freedom + a generic interaction

Hamiltonian H =
p2
x+p2

y

2 + V12(x , y)
System non integrable for a typical potential V12(x , y) 6= V1(x)V2(y)

⇒ long time trajectory prediction impossible

generically chaotic dynamics:

sensitivity on initial conditions,

positive Lyapunov exponent Λ > 0
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Transition to chaos & ‘complex’ dynamics

Chirikov standard map (kicked rotator)

Consider 2D standard map on the torus x , p ∈ [0, 2π)
x ′ = x + p
p′ = p + K cos x ′

for K = 0 the dynamics is regular (rotations)
for K > 0 unstable trajctories appear and
for K > Kc ≈ 0.971635 last KAM tori are broken

and chaotic layers are connected.

Kicking strength K = 0.5 K ≈ Kc = 0.9716 K = 5.0
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Chirikov standard map (kicked rotator) II

Consider 2D standard map on the torus x , p ∈ [0, 2π)
x ′ = x + p
p′ = p + K cos x ′

for K = 0 the dynamics is regular (rotations)
for K > 0 unstable trajctories appear and
for K > Kc ≈ 0.971635 last KAM tori are broken

and chaotic layers are connected.

Kicking strength K = 0.6 K = 1.2 K = 2.0

KŻ (IF UJ/CFT PAN ) Quantum Chaos & Complexity September 5, 2025 4 / 63



Deterministic chaos and predictability

Chaotic system f is deterministic, but its behavior cannot be predicted
for times larger than Lyapunov time TLap = 1/Λ

Here Λ = limt→∞ limδx→0
1
t

ln |f
t(x)−f t(x+δx)|

δx

denotes the maximal (local) Lyapunov exponent
(which depends on position x in the phase space)

examples of Lyapunov time TLap :
solar system – 5 000 000 years
rotation of Hyperion (moon of Saturn) – 36 days
chemical oscillations – 5 minutes
hydrodynamic oscillations – 2 seconds
1 cm3 of argon at room temperature – 10−11 sec.

The shorter Lyapunov time TLap, the more unpreditable and complex
dynamics....

limiting case TLap → 0 describes random sequences
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logistic map: x ′ = ax(1− x)

bifurcation diagram of logistic map as a function of parameter a

and the corresponding Lyapunov exponent Λ(a)
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several facets of complexity

Disorganised/organized Complexity – Warren Weaver (1948)

a) disorganized complexity – large (say, more than 106)
subsystems imply random behaviour (gas in a container)

b) organized complexity – correlated interaction between small number
of subsystems (living systems - self-organized complexity).

computational complexity of an algorithm – minimal resources (time,
memory) to execute it expressed as a function of the input size n –

Manuel Blum (1967)

descriptive (Kolmogorov) complexity of an object (tex, figure) is the
length of the shortest computer program that produces such an output.

Ray Solomonoff (1960), Andrey Kolmogorov (1963),
Gregory Chaitin (1966-68)

example: a random sequence of length n bits
has to be written down so it requires n bits
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nonlinear dynamics: Example I (2000)

Is this figure complex?

not is sense of Kolmogorov complexity !
invariant set of a parabolic map on a square
x ′ = x + exp(y − x)− 1|mod1

y ′ = y + exp(y − x)− 1|mod1

Ashwin, Fu, Nishikawa, K.Ż, Nonlinearity 2000
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‘complex’ dynamics: Example II (April 16, 2003)

Is this figure complex?

not quite ... 6-th iteration of an iterated function system (IFS)
{Fi (x , y), pi = 1/13}13

i=1 defined by 13 linear maps Fi acting on [0, 1]2

approximating invariant set and invariant measure, A.  Loziński, K.Ż, 2003
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complexity and chaos

logistic map: x ′ = ax(1− x) shows chaotic dynamics
for a > ac ≈ 3.5699 (apart of periodic windows)
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invariant density P(x) for logistic map for a = 3.8 (blue curve)

displays fractal properties
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complexity and chaos – Mandelbrot set

contains complex numbers c,
for which the function, fc(z) = z2 + c , does not diverge to infinity

dynamics, related to logistic map, x ′ = ax(1− x),
was defined and drawn by Robert Brooks and Peter Matelski (1978),

popularized by Benoit Mandelbrot who discovered self-similarity (1980).
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recap: classical chaos, randomness & complexity

a) chaotic dynamical systems (positive Lyapunov exponent Λ > 0,
positive Kolmogorov-Synai dynamical entropy HKS > 0), produce time
series which look apparently random, but they will not pass all the
statistical tests for randomness.

b) deterministic time sequence seems to be complex,
but its Kolmogorov complexity is low.

c) any true random sequence has high Kolmogorov complexity –
to encode it it one needs to write down entire sequence.

Anyone who considers arithmetical methods
of producing random digits is, of course,
in a state of sin.

John von Neumann

with deterministic means one generates psuedo-random numbers only...
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Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916
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Quantum systems - a non-relativistic approach

A simple (closed) quantum system S1 described by

a Hamiltonian H1 in a finite dimensional complex Hilbert space HN .
Unitary dynamics, U(t) = exp(−iH1t)

classically regular dynamics ⇒ structured Hamiltonian matrix H1

A composed quantum system S1+2 described by

a Hamiltonian H12 in a complex Hilbert space HN ⊗HN .

classically chaotic dynamics ⇒ structureless Hamiltonian H12

described by a random hermitian matrix
(from a suitable ensemble).
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Random matrices: applications in quantum physics

Quantum Chaos and Unitary Dynamics:

’Quantum chaology’ - Michael Berry 1987

Quantum analogues of classically chaotic dynamical systems can be
described by random matrices

a) autonomous systems – hermitian Hamiltonians:
Gaussian ensembles of random Hermitian matrices,

(GOE, GUE, GSE)
example - coupled spins

b) periodic systems – unitary evolution operators:
Dyson circular ensembles of random unitary matrices,

(COE, CUE, CSE)
example - quantum kicked rotator
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Gaussian Ensembles of Hermitian matrices H

Hermitian random matrix H = H†

consists of independent Gaussian entries
a) orthogonal ensemble, β = 1 - real random numbers,
b) unitary ensemble, β = 2 - complex numbers (real at the diagonal!)
c) symplectic ensemble, β = 4 - quaternions (2× 2 matrices)

leading to 2N × 2N matrix with each eigenvalue occurring twice.
Different normalization conditions, we use the one implied by

the normal distribution 〈Hij〉 = 0 and σ2 = 〈H2
ij 〉 = 1

GUE ⇒ Unitary invariance, P(H) = P(UHU†)

leads to joint probability distribution (jpd) of eigenvalues xi

Pβ(x1, . . . , xN) = CNe
−β

2

∑
j x

2
j

∏
j<k

|xj − xk |β

(a general expression for all three ensembles, β = 1, 2, 4)
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Universal behaviour: Wigner Semicircle Law

Spectral density P(x) for random hermitian matrices

can be obtained by integrating out all eigenvalues but one from jpd.
For all three Gaussian ensembles of Hermitian random matrices one
obtains (asymptotically, for N →∞) the Wigner Semicircle Law (1955)

P(x) =
1

2π

√
2− x2

where x denotes a normalized eigenvalue, xi = λi/
√
N
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Random Matrices & Universality

Universality classes

Depending on the symmetry properties of the system we use ensembles
form

orthogonal (β = 1), (anti-unitary symmetry)
unitary (β = 2), (no anti-unitary symmetry)
symplectic (β = 4), (symmetry + half-integer spin)

universality class.

The exponent β determines the level repulsion,

P(s) ∼ sβ

for s → 0 where s stands for the (normalised) level spacing,
si = φi+1 − φi .

see e.g. Fritz Haake, Quantum Signatures of Chaos
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Level spacing distribution P(s)

Nearest neighbour spacing ’s’

si = xi+1−xi
∆ (”s” of Wigner), where ∆ is the mean spacing

a) Gaussian ensembles for N = 2 ⇒ Wigner surmise

β = 1 GOE (orthogonal) P1(s) = π
2 s exp(−π

4 s
2) ∼ s1

β = 2 GUE (unitary) P2(s) = 32
π2 s

2 exp(− 4
π s

2) ∼ s2

β = 4 GSE (symplectic) P4(s) = 218

36π3 s
4 exp(− 64

9π s
2) ∼ s4.

These distributions derived for N = 2 work well also for Gaussian
ensembles in the asymptotic case, N →∞.

Random unitary matrices & Circular ensembles of Dyson

Uniform density of phases along the unit circle, P(φ) = 1/2π.
Phase spacing, si = N

2π [φi+1 − φi ] since ∆ = 2π/N.
For large matrices the level spacing distributions for Gaussian ensembles
(Hermitian matrices) and circular ensembles (unitary matrices) coincide.
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Classical kicked top model - Haake, Kuś, Scharf 1987

Discrete dynamics on a sphere: X 2 + Y 2 + Z 2 = 1

X ′ = Re(X cos p + Z sin p + iY )e ikZ cos p−X sin p,
Y ′ = Im(X cos p + Z sin p + iY )e ikZ cos p−X sin p,
Z ′ = −X sin p + Z cos p.

linear rotation parameter: p = π/2,

kicking strength k
k = 2.0 k = 2.5 k = 3.0 k = 6.0

transition to chaos: increase of the
Lapunov exponent λ and Kolmogorov–Synai dynamical entropy HKS .
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Quantum kicked top - Haake, Kuś, Scharf 1987

Discrete dynamics in Hilbert space of dimension N = 2j + 1

i) Hamiltonian H(t) = pJy + k
2j J

2
z

∑+∞
j=−∞ δ(t − n)

ii) Unitary evolution operator U = exp[−i(k/2j)J2
z ] exp[−ipJy ]

Level spacing distribution P(s) (where s = (φi+1 − φi )N/2π)

a) k ∈ [0.1, 0.3] (regular dynamics) b) k ∈ [10.0, 10.5] (chaotic dynamics)
N = 201
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Quantum Signatures of Chaos: Fritz Haake, 1941 – 2019

Four editions (1991 – 2018) of the key reference on quantum chaos
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Quantum unitary kicked top – recapitulation

a) In the case of classically regular motion the eigenvalues are not
correlated, so level spacing distribution P(s) displays level clustering,
(Poisson distribution)

b) In the case of classically chaotic motion the eigenvalues are
correlated, so level spacing distribution P(s) displays level repulsion,
(Wigner distribution) with the repulsion exponent β determined by the
symmetry class.

For a suitable choice of parameters deterministic unitary evolution
matrices U = U(p, k) display statistical properties of random matrices of
circular unitary ensemble — their eigenvectors are delocalized.

Bohigas, Giannoni, Schmit (BGS) conjecture (1984):
Under condition of classical chaos deterministic quantum evolution

operators are described by random matrices.
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Wawel castle in Cracow
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Danuta & Krzysztof Ciesielscy theorem
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D.& K. Ciesielscy theorem: For any ε > 0 there exist η > 0 such that
with probability 1− ε the bench Banach talked to Nikodym in 1916 was
localized in η-neighbourhood of the red arrow.
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Plate commemorating the discussion between
Stefan Banach and Otton Nikodym (Kraków, summer 1916)
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Quantum Chaos & Complexity I

Observation: deterministic quantum chaotic systems,
say: U = exp[−i(10/2j)J2

z ] exp[−iπJy/2], (chaotic kicked top)
(low Kolmogorov complexity)

display statistical properties typical of ensembles of random matrices
(high Kolmogorov complexity).

How to define complexity for quantum dynamics?

OTOC (out-ot-time-order correlations)
F (t) := 〈A†(t)B†(0)A(t)B(0)〉
C (t) := 〈[A(t),B(0)]2〉 = 2[1− Re(F (t))]

Larkin and Ovchinnikov (1969); Maldacena, Shenker, Stanford (2016)

geometric complexity,
Nielsen (2005)
– length of the shortest geodesic

from I to U
figure by L. Li et al. 2025
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Quantum Chaos & Complexity II

holographic complexity, Susskind (2016)

circuit complexity –
minimal number of elementary gates

used to produce unitary U =
Jefferson and Myers (2017)

figure by L. Li et al. 2025

Krylov complexity (operator growth), Parker (2019); Caputa (2021)

Kenfack and K. Ż. Negativity of the
Wigner function as an indicator
of nonclassicality (2004)

quantum complexity
defined by growth of

Wigner negativity
(defined for discrete Hilbert space)

N (ρ) =
∑

p,q |Wρ(p, q)|

Basu, Chowdhury, Ganguly,
Nath, Parrikara, Paul (2025)
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Wasserstein Complexity

Wasserstein complexity of quantum circuits (and quantum channels)
Li, Bu, Koh, Jaffe, Lloyd (2025)

For a quantum gate U they define its Wasserstein complexity CW ,

CW (U) = maxψ DW

(
|ψ〉,U |ψ〉

)
,

where DW stands for the Wasserstein distance
(Monge-Kantorovich earth mover distance, to be defined below)

which is not unitary invariant !

DW (|ψ〉, |φ〉) 6= DW (U|ψ〉,U|φ〉),

in contrast to standard distances Ds (Hilbert-Schmidt, Bures, trace)
for which relation: Ds(|ψ〉, |φ〉) = Ds(U|ψ〉,U|φ〉) holds.

Wasserstein distance DW has several appealing properties,
but it is not easy to evaluate!
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Quantum Signatures of Chaos:

How to define a quantum analogue of the Lyapunov exponent ?

but DHS(ρ, σ) = DHS(UρU†,UσU†).

any unitary dynamics
does not change the standard distances !
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Are all ‘reasonable’ distances between quantum states unitarily invariant,
D(ρ, σ) = D(UρU†,UσU†) ?

a counter example: the Monge distance

defined between the corresponding Q-functions, Qi (α) = 〈α|ρi |α〉,
DM(ρ1, ρ2) = DM

(
Q1(α),Q2(α)

)
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Monge problem (1781)

An optimal scheme of translocation of soil between the initial shape
Q1(x1, x2) and the final one Q2(x1, x2) gives the Monge distance

between both probability distributions, DM(Q1,Q2).

minimize the total work against friction, (neglect the vertical component)
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1D problem – solution of T. Salvemini
Sul calcolo degli indici di concordanza... (1943)

For any two 1D probability distributions Q1(t) and Q2(t),
represented by their cummulative distributions, Fi (x) =

∫ x
−∞Qi (t) dt,

their Monge distance reads,
DM(Q1,Q2) =

∫ +∞
−∞ |F1(x)− F2(x)| dx .
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Monge metric & quantum states: a) infinite space

natural choice: harmonic oscillator coherent states |α〉 for α ∈ C
Monge distance between any two coherent states satisfies classical
property :

DM(|α〉, |β〉) = |α− β|

2D problems with radial symmetry ⇒ 1D solution of Salvemini works!

Fock states |n〉 with n = 0, 1, 2 . . . with DHS(|i〉, |j〉) =
√

2 = const
DM(|0〉, |1〉) << DM(|1〉, |100〉) (as desired)

thermal states |n̄〉 with mean number of photons equal to n̄
DM(|n̄〉, |m̄〉) ≈ |

√
n −
√
m|.
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Wawel Castle in Cracow
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transport problem – Kantorovich formulation (1939)
Mathematical Methods in the Organization and Planning of Production

Transport plan

A transport plan is a measure ω on X × Y such that

ω(A× Y ) = µ(A), ω(X × B) = ν(B), for any A ⊂ X , B ⊂ Y .

Kantorovich optimal transport problem (1942)

Denote by Γ(µ, ν) the set of all transference plans for fixed µ, ν.

Find γ, which realises inf
γ∈Γ(µ,ν)

∫
X×Y

c(x , y)dγ(x , y).

Wasserstein p–distances (1969) (classical)

Let Y = X and take c to be a distance function. Then, for any p ≥ 1,

Wc,p(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
X×Y

c(x , y)pdγ(x , y)

)1/p

is a distance on P(X ).
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Discrete optimal transport

Take an N point set X = Y = {xi}Ni=1.

Consider two probability vectors pA, pB of length N,
which can be seen as classical states pA, pB ∈ P(X ).

A transport plan PAB ∈ Γcl(pA, pB) is a classical state P(X × X ).

PAB is identified with the probability vector P̃AB of length N2.

Define a diagonal coupling matrix ρABµν := P̃AB
µ δµν , for

µ, ν = 1, . . . ,N2.

Take a distance function d on X and define a matrix Eij := d(xi , xj).

Recast E into a vector Ẽ of length N2.

Define a diagonal cost matrix C cl
µν := Ẽµδµν .

The classical optimal transport problem then reads

T cl
C (pA, pB) := min

PAB∈Γcl (pA,pB)
TrC clρAB .
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Quantum optimal transport – idea

Kantorovich formulation of transport problem for:

a) continuous 1D probabilities pA(x) and pB(y)
coupled by a joint distribution P(x , y);

b) two N-point classical states pA, pB ∈ ∆N coupled by a joint state
PAB ∈ Γcl ⊂ ∆N2 with adjusted marginals;

c) two quantum states ρA, ρB ∈ ΩN coupled by a bipartite state
ρAB ∈ ΓQ ⊂ ΩN2 such that TrA ρ

AB = ρB and TrB ρ
AB = ρA.
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Quantum optimal transport – brief history

Monge problem for Husimi distributions of quantum states.
K. Ż., H. Wiedemann, W. S lomczyński, Vist. Astrronom. 37, 153 (1993).
K. Ż., W. S lomczyński, J. Phys. A 31, 9095 (1998).
K. Ż., W. S lomczyński, J. Phys. A 34, 6689 (2001).

Dynamical formulation [Benamou–Brenier (2000)].
E.A. Carlen, J. Maas, Comm. Math. Phys. 331, 887 (2014).
N. Datta, C. Rouzé, Ann. H. Poincaré 21, 2115 (2020).
K. Ikeda, Quantum Inform. Process. 19, 25 (2020).

Direct generalisations using quantum couplings
F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343, 165 (2016).
M.H. Reira, Bachelor’s Thesis Universitat Autònoma de Barcelona (2018).
N. Yu, L. Zhou, S. Ying, M. Ying, arXiv:1803.02673 (2018).
S. Chakrabarti, Y. Huang, T. Li, S. Feizi, X. Wu, arXiv:1911.00111 (2019).
G. De Palma, D. Trevisan, arXiv:1911.00803 (2019).
E. Caglioti, F. Golse, T. Paul, J. Stat. Phys., 181, 149 (2020).
G. De Palma, M. Marvian, D. Trevisan, S. Lloyd, IEEE Trans. Inf. Theor. (2021)
R. Duvenhage, J. Operator Theory (2022).
Friedland, Eckstein, Cole, K. Ż. Phys. Rev. Lett. (2022)

several other recent papers, (2022-2025)
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Quantum optimal transport – definition

ΩN := {ρ ∈ B(CN) | ρ = ρ†, ρ ≥ 0, Tr ρ = 1}
density matrices of order N.

Fix two states ρA, ρB ∈ ΩN .

Consider a coupling matrix (or “quantum transport plan”)

ρAB ∈ ΩN2 , such that TrA ρ
AB = ρB and TrB ρ

AB = ρA.

Denote by ΓQ(ρA, ρB) ⊂ ΩN2 the set of all coupling matrices.

Note that ρA ⊗ ρB ∈ ΓQ(ρA, ρB).

Take a quantum cost matrix C = C † ∈ B(CN×N).

The quantum optimal transport problem defined by the minimum

TQ
C (ρA, ρB) := min

ρAB∈ΓQ(ρA,ρB)
TrCρAB .

How to select a suitable cost matrix C?
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Quantum cost matrix CQ : diag(CQ) = C cl .

Motivations:

semi-classical limit of QM (∞ dim) [Golse, Mouhot, Paul, Caglioti]
quantum transport plans ↔ quantum channels

[De Palma, Trevisan (2019)]
Hamming distance [De Palma, Marvian, Trevisan, Lloyd (2019)]

Our motivation: (coherification of the diagonal classical cost matrix C cl)

Find cost matrices, which yield an analogue of Wasserstein distances.

Projective cost matrix CQ – antisymmetric subspace – singlet state

Take a computational basis
{
|i〉
}N
i=1

and set |ψ−ij 〉 = 1√
2

(|i , j〉 − |j , i〉).

CQ =
N∑

j>i=1

|ψ−ij 〉〈ψ
−
ij | = 1

2

(
1N2 − SWAP

)
= (CQ)2.

The same idea explored in: Reira (2018); Yu, Zhou, Ying, Ying (2018)
and Chakrabarti, Huang, Li, Feizi, Wu (2019).
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p–Wasserstein distances

p-Wasserstein distances

If the classical cost matrix comes from a distance on X then,
in analogy to the p–norm, for any p ≥ 1 one defines,

W cl
C ,p(pA, pB) :=

(
T cl
Cp(pA, pB)

)1/p
=

(
min

PAB∈Γcl (pA,pB)
TrCpρAB

)1/p

is a distance on P(X ).

Remark:

If X has the geometry of a simplex,
i.e. d(xi , xj) = 1− δij ,
then Cp = C and W cl

C ,p = (W cl
C ,1)1/p for any p ≥ 1.
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Bounds on quantum optimal transport, W =
√
TQ

Fidelity F (ρA, ρB) :=
(

Tr
∣∣√ρA√ρB ∣∣)2

.

Quantum distances:

I :=
√

1− F , root infidelity,

B :=

√
2
(

1−
√
F
)

Bures distance.

Theorem: bounds for W =
√
TQ

(based on [Yu, Zhou, Ying, Ying (2018)])

For any ρA, ρB ∈ ΩN we have

1√
2
I (ρA, ρB) ≥W (ρA, ρB) ≥ 1

2B(ρA, ρB).

Left ineqality is saturated
if ρA or ρB is pure.

comparison of distances for an
exemplary trajectory

ρA = 9
201+ 1

10 |0〉〈0|,
ρB = (1− t)ρA + t(|+〉〈+|)
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Transport metric on the Bloch ball

Theorem

For N = 2, Wp satisfies the triangle inequality iff p ≥ 2:
For all ρA, ρB , ρC ∈ Ω2

Wp(ρA, ρB) + Wp(ρB , ρC ) ≥Wp(ρA, ρC ).

Thus, Wp for p ≥ 2 forms a distance on the Bloch ball Ω2.

Wp is not a distance for p < 2, so the triangle inequality fails for TQ ,

but it holds for W = W2 =
√
TQ

Computation of TQ on Ω2 amounts to solving a 6th order polynomial eq.

For classical states ρclr = diag(r , 1− r), we obtain

W
(
ρclr , ρ

cl
s

)
= 1√

2
max

{∣∣√r −√s∣∣, ∣∣√1− r −
√

1− s
∣∣}.

For isospectral states, eig(ρ) = {λ, 1− λ} and U = O(θ) ∈ U(2),

W
(
ρ,UρU†

)
=
√

1√
2
−
√
λ(1− λ)

∣∣ sin(θ/2)
∣∣.
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Transport metric on the Bloch ball – geodesics

Geodesic lines

Are there ρA, ρB , ρC ∈ Ω2 such that

W (ρA, ρB) + W (ρB , ρC ) = W (ρA, ρC ) ?

No geodesics for root infidelity I
and Bures distance B.

But there are geodesics for the
Bures angle

A(ρA, ρB) := 2
π arccos

√
F (ρA, ρB)

. . . and there are geodesics for the
transport metric W !

Friedland, Eckstein, Cole, K. Ż. Phys. Rev. Lett. 2022
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Quantum vs classical optimal transport

Decoherence: ρα := αρ+ (1− α) diag(ρ) for α ∈ [0, 1].

ρ0 is a classical state
α is proportional to the l1-coherence of ρα

The transport of quantum states is more expensive

The optimal quantum transport cost between two density matrices
ρAα 6= ρBα ∈ ΩN decreases with the parameter α,

TQ(ρAα, ρ
B
α ) ≤ TQ(ρAβ , ρ

B
β ), for 0 ≤ α ≤ β ≤ 1.

Quantum optimal transport is cheaper (cf. [Caglioti, Golse, Paul (2020)])

Let r, s be N-dim probability vectors and let ρclr , ρ
cl
s ∈ ΩN be the

corresponding quantum states defined as (ρclp )ij := piδij .

Then, with C cl = diag(CQ),

TQ
(
ρclr , ρ

cl
s

)
≤ T cl

(
r, s
)
.
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Quantum-to-classical transition for transport cost

Cost matrix decoherence: CQ
α := αCQ + (1− α) diag(CQ),

α ∈ [0, 1].

CQ
0 is a classical cost matrix
α is proportional to the l1-coherence of ρα
CQ
α is not a quantum cost matrix for α < 1.

Define W α :=
√
TQ
α with

TQ
α (ρA, ρB) := min

ρAB∈ΓQ

(
Tr CQ

α ρ
AB
)
.

Take classical states of order 2:
ρclr = diag(r , 1− r).

W α(ρclr , ρ
cl
s ) is a strictly

decreasing function of α,
unless either of states is pure.

α  0

α  0.5

α  0.8

α  0.93

α  0.98

α  1

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6
W

α

t

W α(diag(0.3, 0.7), diag(t, 1− t))
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Energy distance for pure quantum states, N ≥ 2

1. Monge distance defined by coherent states is not easy to compute...
hard optimization problem (even for two pure states)

2. For pure states the Wasserstein distance determined by any classical
Euclidean distance matrix Eij = d(xi , xj) is given explicitely !

Example - N points on an (energy) line: Eij = d(xi , xj) = |xi , xj |

For a given Hamiltonian H with non-degenerate eigenvalues Ei and
eigenvectors |i〉, so that H|i〉 = Ei |i〉, we set Eij = |Ei − Ej | and obtain

W 2
H(|ψ〉, |φ〉) =

N∑
j>i=1

|Ei − Ej |2 |ψiφj − φiψj |2,

where the analyzed states are expanded in eigenbasis of Hamiltonian,
|ψ〉 =

∑
i ψi |i〉 and |φ〉 =

∑
j φj |j〉.
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Energy distance determined by a Hamiltonian H

1. Energy distance for any two eigenstates of H are equal to the energy
difference

W (|i〉, |j〉) = |Ei − Ej | (∗∗)

2. For any to pure states |ψ〉 and |φ〉 their Energy distance
satisfies the bounds

|〈φ|H|φ〉−〈φ|H|φ〉|2 ≤W 2(|φ〉, |ψ〉) ≤ |〈φ|H|φ〉−〈φ|H|φ〉|2 +2(∆2
φ+∆2

ψ)

where the variance read ∆2
φ = 〈φ|H2|φ〉 − 〈φ|H|φ〉2.

which for two eigenstates (∆φ = ∆2
ψ = 0) implies Eq. (**).

Example: 1D Hydrogen atom, H = p2/2m− e2/r and its eigenstates |n〉:
any standard distance Dx (trace, HS, Bures) imply equilateral triangle,

Dx(|0〉, |1〉) = Dx(|1〉, |100〉) = Dx(|0〉, |100〉) for all eigenstates,

while the energy (Wasserstein) distance reveals the energy difference:
W (|0〉, |1〉) <<W (|1〉, |100〉) < Dx(|0〉, |100〉).
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Trace distance & Energy distance

For eigenstates of H the energy distance is equal to the number of
resonant photons absorbed during the transition

In such a case the trace distance between orthogonal states forms an
equilateral triangle, Dtr (|1〉, |3〉) = Dtr (|1〉, |2〉) = Dtr (|2〉, |3〉),

while the Energy distance forms a metric line’
W (|1〉, |3〉) = W (|1〉, |2〉) + W (|2〉, |3〉).
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Angular momentum distance WJ

Example 2: Angular momentum operator, J2 = J2
x + J2

y + J2
z

If H = J =
√
J2 then the corresponding angular momentum distance WJ

satisfies the semiclassical property:

Let |0〉 = |j , j〉 be the maximum weight state (north pole!) and the state
|θ〉 := exp(−iθJy )|0〉 denote spin coherent state pointing in direction θ.

Then, semiclassically, j >> 1, the Wasserstein distance WJ between both
coherent states tends to the geodesic distance between both points at the
sphere:

WJ(|0〉, |θ〉) ≈ j θ

as desired for analyzis of the semiclassical regime j >> 1.
Main idea of this application:

For a given unitary matrix U ∈ U(N) and originally close coherent states
|α(0)〉, |β(0)〉, analyze, how the angular momentum distance between
them evolves in time, WJ(t) = WJ

(
|α(t), β(t)〉

)
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Novel attempt to define quantum Lapunov exponent

Transition to chaos: Classical and quantum dynamics of kicked top.
Phase space approach: placing two coherent states at two points close to
a selected point (θ0, φ0) we study the diveregence of the Wasserstein
distance WJ(t) and evaluate Lapunov exponents Λ (a signature of
quantum complexity) for different dimensions N = 2j + 1 = [7, ...51] and
kicking strength k ∈ [1, 3.6].

k ∈ [1, 3.6].
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Quantization of a classical distance: a general approach

Consider a set of N points xi ∈ Rm, k = 1, . . . ,N.
Denote distances between them by dij = d(xi , xj), also not Euclidean !

Theorem: (Bistroń, Miller, 2025 to appear). For any chosen classical
distance matrix dij = dji ≥ 0 of order N, the map acting on the space of
pure quantum states of size N,

D2
W (|ψ〉, |φ〉) :=

∑N
j>i=1 d

2
ij |ψiφj − φiψj |2,

satisfies the triangle inequality and induces a quantum distance
in the complex projective space CPN−1.

Here ψi and φj denote complex expansion coefficients,

|ψ〉 =
∑N

i=1 ψi |i〉 and |φ〉 =
∑N

j=1 φj |j〉.

Proof is based on a generalized Cauchy - Schwarz inequality
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generalized Cauchy - Schwarz inequality (complex case),
(coefficients ωijk can be negative!)

Rafa l Bistroń and Tomasz Miller (2025)
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Quantum Hamming distance

Consider two pure states of n-qubit system, |Ψ〉, |Φ〉 ∈ Hn
2 represented by

2n coeficients, ψi1...in and φj1...jn .

Find a true distance DH such that for any two states in the
computational basis, |Ψ〉 = |i1i2 . . . in〉 and |Ψ〉 = |j1j2 . . . jn〉
the distance DH(|Ψ〉, |Φ〉) is equal to the classical Hamming distance
dH(ik , jk) between the bit strings ik and jk ,
i.e. the minimal number of NOT gates to transform string ik into jk .

Related problem was studied by Chau (1999); De Palma, Marvian,
Trevisan, Lloyd (2019); Girolami, Anza, Phys Rev. Lett. (2021);
Grudka, Kurzyński, Sajna, Wójcik2, Phys. Rev. A (2024).

Our explicit solution (no optimization needed!) reads

D2
H(|ψ〉, |φ〉) :=

∑1
i1,...in=0 d

2
H(ik , jk) |ψikφkj − φikψjk |2,

and forms a true distance, as the triangle inequality holds.
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Quantum Hamming distance & applications

Random search procedure: we wish to get close to a given desired state
by minimization a distance to the goal: 4-qubit state

|GHZ4〉 = (|0000〉+ |1111〉)/
√

2.

Minimization of quantum Hamming distance converges much faster than
minimization of unitarily invariant Bures distance.

other possible application: a measure of quantum complexity !
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Concluding Remarks

Several notions of classical complexity. Deterministic chaos
produces pseudo-random sequences which do not exhibit large
Kolmogorov complexity.
There exist several notions of quantum complexity: e.g. geometric
(Nielsen), holographic (Susskind), circuit complexity.
Quantized chaotic systems (of low Kolmogorov complexity)
produce unitary operators with statistical properties characteristic to
random matrices (high complexity).
other approaches to describe a given unitary dynamics U involve

a) evolution of Wigner negativity
b) maximal Monge-Kantorovich-Wasserstein distance

between state |ψ〉 and its image U|ψ〉.
Quantum Monge distance is not unitarily invariant.
Thus it evolves in time and can be applied to define a notion
of quantum Lyapunov exponent
and the notion of quantum earth mover (Wasserstein) complexity.

Monge-Kantorovich-Wasserstein approach applied for any two
pure states of an arbitrary size N provides explicit formulae. For the
cost matrix related to angular momentum operator J the distance
WJ between any to vector coherent states is determined by the
classical distance between the points at the sphere they are localized.
For any unitary dynamics U one can analyze how the distance WJ

diverges in time.
Quantum Lapunov exponents evaluated in this way reflect the
transition to chaos with increasing kicking strength and for increasing
dimension j mathch the classical behaviour.
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Plate commemorating the discussion between
Stefan Banach and Otton Nikodym (Kraków, summer 1916)
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Bench commemorating the discussion between
Otton Nikodym and Stefan Banach (Kraków, summer 1916)

Sculpture: Stefan Dousa Fot. Andrzej Kobos

opened in Planty Garden, Cracow, Oct. 14, 2016
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monument of Stefan Banach opened in Ostrowsko, August 31, 2025

Ostrowsko (Podhale) – family place of Stefan Greczek (father of Banach)
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50 years after the discussion at the bench in Cracow,
in 1966, Otton Nikodym published the book

The Mathematical Apparatus for Quantum Theories
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